Положительное и отрицательное воздействие солнечных панелей на окружающую среду +4


Солнечные панели это исключительно «зеленый» источник энергии, как вы думаете? Есть ли хорошее и плохое воздействие солнечной энергии на окружающую среду? Действительно ли солнечные панели такие «зеленые»? Воздействие солнечных панелей на окружающую среду широко обсуждается и комментируется, но какие аргументы верны, и что лишь шум социальных сетей?

Основные аргументы против солнечных панелей заключаются в том, что они требуют больше энергии и оборудования для сжигания ископаемого топлива для добычи, производства и транспортировки, чем они экономят.

Другой аргумент заключается в том, что в производственном процессе используются токсичные химические вещества, которые приносят больше вреда, чем пользы. Да, солнечная энергия не идеальна.

С другой стороны, утверждается, что солнечные панели создают больше чистой энергии, чем требуется для их создания, и ведущие мировые компании действительно подают пример в отношении правильного использования химикатов. Здесь мы рассмотрим положительное и отрицательное воздействие солнечных панелей на окружающую среду, а также то, что ждет в будущем солнечную энергетику.

Отрицательное воздействие на окружающую среду солнечные панели

Начнем с очевидного: солнечная энергия не идеальна. Как и у всего в жизни, есть плюсы и минусы. Это особенно актуально для обсуждения таких тем, таких как производство энергии для 7 миллиардов человек устойчивым и экономичным способом.

Солнечная энергия не лишена недостатков. Давайте рассмотрим их здесь:

  1. Потребность в энергии. Солнечная энергия требует для производства значительного количества энергии. Горнодобывающая промышленность, производство и транспортировка требуют значительного количества энергии. Кварц необходимо обрабатывать, очищать, а затем производить вместе с другими компонентами, которые могут поступать с разных предприятий (алюминий, медь и т. Д.), Для производства одного солнечного модуля. Для нагрева кварца на этапе обработки требуется очень большое количество тепла. Производство требует сочетания нескольких материалов с невероятной точностью для производства высокоэффективных панелей. Все это требует много энергии. При использовании традиционных видов топлива, таких как газ или уголь, они добываются, очищаются / обрабатываются и сжигаются в очень больших масштабах, как правило, в одном месте.

  2. Химические вещества. Для производства кремния «солнечного» качества при обработке полупроводников обычно используются опасные химические вещества. В зависимости от производителя солнечных батарей и страны-производителя эти химические вещества могут утилизироваться, а могут и не утилизироваться. Как и в любой отрасли, есть компании, которые подают пример, а есть другие, которые стараются сэкономить деньги. Не каждая компания выбрасывает химические вещества, или не перерабатывает их побочные продукты должным образом, но есть и плохие примеры.

  3. Утилизация - что происходит, когда солнечные панели ломаются или выводятся из эксплуатации? Хотя переработка солнечных панелей еще не стала серьезной проблемой, в ближайшие десятилетия она станет серьезной, поскольку солнечные панели необходимо заменить. В настоящее время солнечные модули можно утилизировать вместе с другими стандартными электронными отходами. Страны, не имеющие надежных средств удаления электронных отходов, подвергаются более высокому риску проблем, связанных с переработкой. ‍ Это основные экологические проблемы, связанные с фотоэлектрической отраслью. Опасения, безусловно, являются поводом для дальнейшего расследования, но, судя по цифрам, могут быть необоснованными.

Химические вещества, переработка и утилизация солнечных батарей

Переработка и утилизация солнечных панелей - одна из основных проблем. Есть явная проблема с решениями на перспективу. Это не так широко распространено, и не токсично, как может показаться. Кремниевые пластины стандартных солнечных модулей инкапсулируются, обычно этилвинилацетатом (EVA). Этот слой защищает кремниевую пластину. Если модули не утилизируются должным образом и подвергаются определенным условиям испытаний, возможно и некоторое выщелачивание. При нормальных условиях эксплуатации эти материалы не выделяются. Солнечная энергия очень эффективна для уменьшения выбросов углерода. Как и в случае со всеми технологиями, необходимо иметь дело с непреднамеренными отходами или побочными продуктами. Очевидный ответ - переработать солнечные панели и продавать их как базовые элементы. Теоретически это здорово, но этот путь не является экономичным и масштабируемым - пока.

Пути вперед

Крупномасштабные заводы по переработке солнечных панелей существуют, но они не так распространены, как хотелось бы. Это отставание всегда ожидаемо с новыми отраслями и технологиями.

Авторесайклеры не появились на следующий день после того, как Model T сошла с конвейера. Склады бутылок не ждали появления бутылок. Переработчики электронных отходов стали обычным явлением совсем недавно, спустя десятилетия после взрыва потребительской электроники. Второстепенным отраслям необходимо время, чтобы развиваться вокруг основных отраслей. Альтернативным или дополнительным решением, помогающим экономить на вторичной переработке, является взимание платы с производителей солнечных панелей, чтобы они упростили процесс вторичной переработки, или обязательное выполнение программы вторичной переработки со стороны производителей. Для реализации и совершенствования обоих вариантов потребуется время. Экономика переработки солнечных панелей будет улучшена по мере вывода из эксплуатации большего количества солнечных панелей. Более высокие объемы в любой отрасли позволяют возникнуть эффекту масштаба и творить чудеса. Простым решением проблемы химикатов, используемых в солнечных батареях, было бы найти альтернативные методы производства модулей. Это решение уже находится в стадии реализации, хотя сроки его коммерциализации трудно предсказать. Хотя химические вещества используются в производстве солнечных панелей, сравнение с традиционными видами топлива может дать полезный контекст. Производство любой формы энергии в массовом масштабе потребует определенного использования химических веществ в цепочке поставок. После добычи уголь необходимо подвергнуть химической очистке и переработке. При добыче фракционного природного газа используются химические смеси. И уголь, и газ сжигаются для производства электроэнергии. Сама ядерная энергия требует обогащения с чрезвычайно радиоактивными материалами. Нет идеального источника топлива, у каждого есть свои экологические преимущества и недостатки. Но одни могут быть лучше других.

Влияние производства солнечных панелей на окружающую среду

Как производятся солнечные панели и каково воздействие этого процесса на окружающую среду?

Солнечные панели состоят из нескольких компонентов: каркаса, ячеек, заднего листа, защитной пленки, проводников и крышки из закаленного стекла. Рама изготовлена из алюминия, элементы - из кремния, проводники - из меди, а задний лист и пленка - обычно из материала на основе полимера или пластика.

Для производства солнечных батарей сырье необходимо добывать, это в основном кварц, который перерабатывается в кремний. Алюминий, медь или серебро также являются ключевыми материалами, которые необходимо добывать или получать из переработанных источников, но в основном они добываются из-за возросшего расширения фотоэлектрической отрасли за последние 10 лет. После добычи сырья кварц перерабатывается в кремний «электронного» качества. Этот процесс включает нагревание кварца в высокотемпературной печи, и его реакцию с различными химическими веществами. Для формирования экструдированного алюминиевого каркаса и прокатки закаленного стекла требуются другие производственные процессы. Для производства чего-либо обычно требуется огромное количество энергии.

Для создания солнечных панелей требуется много энергии, и общие выбросы значительны, но после установки солнечных панелей они производят энергию без выбросов в течение более 25 лет.

Процесс производства не имеет значения без контекста энергии, вырабатываемой за весь срок службы, а также от того, как складываются другие источники топлива.

Ответы на два ключевых вопроса дадут этот контекст:

  1. Компенсирует ли чистая энергия, вырабатываемая солнечными панелями, негативное воздействие в процессе добычи и производства?

  2. Как интенсивность выбросов солнечной энергии сравнивается с традиционными источниками электрической энергии, такими как уголь?

Интенсивность выбросов углерода из солнечных панелей и других видов топлива

Интенсивность выбросов - это совокупные выбросы углерода за весь срок службы, рассчитанные на единицу энергии. Это выражается в граммах эквивалента диоксида углерода на киловатт-час (gC02e / кВтч) или эквивалентном значении в тоннах эквивалента углекислого газа на мегаватт-час (tC02 / МВтч). Чем ниже интенсивность выбросов, тем лучше воздействие на окружающую среду, поскольку меньше CO2 выделяется для выработки того же количества энергии. Выбросы углерода от солнечной энергии в течение всего срока службы чтобы нарисовать четкую картину углеродного следа солнечной энергии, за последние пару десятилетий были проведены сотни исследований по оценке жизненного цикла профиля выбросов солнечной энергии. Эти оценки включали этапы добычи, эксплуатации и переработки электроэнергии из различных источников топлива, таких как солнечные фотоэлектрические, солнечные тепловые, ветровые, ядерные, природный газ и уголь. В 2014 году Национальная лаборатория возобновляемых источников энергии (NREL) Министерства энергетики США проверила 400 из этих исследований с учетом расхождений, выбросов и других переменных факторов, влияющих на данные. Затем данные были согласованы с использованием дискретного набора допущений для целей сравнения. Результаты показали, что солнечным панелям требуется от 60% до 70% энергии на начальном этапе, примерно 25% во время работы и примерно от 5% до 20% после их продуктивного срока службы. С другой стороны, уголь генерирует ~ 98% выбросов в процессе эксплуатации (добыча, транспортировка, сжигание и т. Д.) И только 1% во время процессов добычи и переработки.

Солнечные панели сегодня почти на 50% эффективнее, чем когда проводилось это исследование. Как и следовало ожидать, методы производства энергии на основе ископаемого топлива производят больше CO2, чем возобновляемые источники на 1 кВтч. Чего нельзя было с начала ожидать, так как сразу не видно насколько велик разрыв между видами топлива.

Интенсивность выбросов в течение жизненного цикла солнечных фотоэлектрических систем составляет примерно 40 гСО2 / кВтч. Интенсивность выбросов угля в течение жизненного цикла составляет приблизительно 1 000 г CO2 / кВтч. Уголь производит в 25 раз больше углекислого газа, чем солнечная энергия, что позволяет производить такое же количество энергии.

Изменение интенсивности поглощения излучения как одно из предостережений не в пользу возобновляемых источников энергии заключалось в том, что кремниевые солнечные панели в гармонизации NREL были эффективны от 13,2% до 14,0%. Это было точно до 2014 года, но сегодня поликристаллические солнечные модули регулярно достигают КПД> 19,5%. Солнечные панели сегодня почти на 50% эффективнее, чем когда проводилось это исследование. Создание большего количества кВтч чистой энергии за счет того же производственного цикла, что еще больше снизит интенсивность выбросов солнечных фотоэлектрических систем. Даже худшие оценки для солнечных фотоэлектрических систем все еще в 3 раза лучше лучших оценок для угля. Средние и согласованные значения дают более точную картину интенсивности выбросов от различных видов топлива (с учетом статистических выбросов). Гармонизированное значение также учитывает значение солнечного излучения 1700 кВтч / м2, что примерно равно уровням, наблюдаемым в Альберте и Саскачеване.

Интенсивность выбросов - невероятно важный показатель, который необходимо учитывать при оценке воздействия солнечной энергии на окружающую среду. Были проведены другие исследования и мета-анализ, которые подтверждают влияние солнечных панелей на окружающую среду по сравнению с другими источниками топлива, обнаруженными NREL.

Дополнительный анализ в Брукхейвенской национальной лаборатории, Исследовательском центре окружающей среды PV, и в исследованиях энергетической политики.

Срок окупаемости солнечных панелей, если для создания солнечных панелей требуется больше энергии, чем они будут производить в течение своего срока службы, или аналогичным образом, если исходные эффекты производства солнечных панелей хуже, чем эксплуатационные преимущества, эта технология оценки в корне ошибочна. Люди часто смотрят на окупаемость инвестиций (ROI) или период окупаемости, чтобы оценить стоимость финансовых вложений. Как скоро я верну свои деньги? 25-летний период окупаемости не радует большинство людей, но трехлетний период окупаемости привлечет внимание большинства инвесторов. Тот же вопрос можно сформулировать для выработки энергии и оценки воздействия солнечных панелей на окружающую среду - сколько времени пройдет, пока солнечная энергетическая система вырабатывает достаточно энергии, чтобы компенсировать затраты на производство энергии? Срок окупаемости солнечной энергии зависит от вашего местоположения, поскольку различные погодные условия влияют на выработку солнечной энергии. Солнечная панель, установленная в пустыне Сахара, будет производить больше энергии и окупаться намного быстрее, чем такая же панель, установленная над полярным кругом. И снова NREL предоставляет некоторые заслуживающие внимания данные. Эти данные включают изготовление модуля, рамы и баланс компонентов системы.

Срок окупаемости монокристаллических солнечных батарей составляет всего 2 года. Еще одно важное предостережение, которое следует отметить, заключается в том, что значение основано на предполагаемой эффективности солнечной панели в 14%. Сегодня солнечные панели на 40-50% эффективнее. Имея это в виду, разумно предположить, что солнечные панели имеют приблизительный период окупаемости энергии от 1 до 2 лет. Если бы вам предложили инвестицию со сроком окупаемости 2 года, вы бы ее приняли?

Электроэнергетика. Источники топлива. Воздействие на окружающую среду

Экологические преимущества солнечной энергии также различаются в зависимости от того, какая форма энергии вытесняется. Как следует из приведенного ранее рисунка, производство солнечной энергии вместо использования электроэнергии из угольных электростанций будет гораздо более выгодным, чем если бы вы устанавливали солнечные панели, чтобы компенсировать в первую очередь гидро- или ветровую электроэнергию из сети. Существует ряд других причин для установки солнечных панелей, даже если ваша сеть питается от возобновляемых источников (например, снижение нагрузки на сеть, и снижение стоимости владения электроэнергией в течение всего срока службы), но они не будут здесь подробно описаны.

Производство энергии в Канаде по провинциям и типу топлива. Составлено Kuby Renewable Energy.
Производство энергии в Канаде по провинциям и типу топлива. Составлено Kuby Renewable Energy.

Такие провинции, как Новая Шотландия, Саскачеван и Альберта, больше всего выиграют от солнечной энергии, поскольку энергия в этих провинциях поступает в основном из ископаемого топлива. Квебек меньше всего выиграет от использования солнечной энергии, поскольку их сеть уже почти полностью избавлена ​​от выбросов.

Заключение

Солнечная энергия не идеальна, но в целом она оказывает положительное чистое воздействие на окружающую среду и финансовые последствия. Да, для добычи / производства солнечных панелей требуется огромное количество энергии, и да, в процессе производства используются химические вещества. Эти два неопровержимых факта не означают, что солнечные панели имеют чистое негативное воздействие, как показывают данные. Энергия, необходимая для создания солнечной панели, окупится менее чем за 2 года. Даже с учетом стадии производства и обработки солнечной энергии, генерируемые выбросы в 3–25 раз меньше, чем при производстве того же количества энергии из ископаемого топлива. Снижение выбросов от использования солнечной энергии по сравнению с любым ископаемым топливом (особенно углем) делает эту технологию чрезвычайно выгодной.




К сожалению, не доступен сервер mySQL